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Abstract. The paper presents a miDimal proof theory which is adequate for prov-
ing the main important temporal properties of reactive programs. The properties
we consider consist of the classes of invariance. rcsponse, and precedence properties.
For each of these lAasses we present a small set of rules that is complete for verify-
ing properties belonging to this class. We illustrate the application of these rules
on several examples. We discuss concise presentations of complex pro 'fs using the
devices of transition tables and proof diagrams.
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1 Introduction

In this paper we present a minimal proof theory that is adequate for proving interesting
properties of reactive systems. Reactive systems are systems (and programs) whose main
role is to maintain an ongoing interaction with their environment, rather than to pro-
duce so-te final result on termination. Such systems should be specified and analyzed in
terms of their behaviors, i.e., the sequences of states or events they generate during their
operation. The class of reactive systems includes programs such as operating systems,
programs controlling industrial plants, embedded systems, and many others. It is clear
that it also includes the classes of concurrent and distributed programs since, independent
of the goal and purpose of the complete system, each component of the system has to be
studied in terms of the interaction it maintains with the other components.

A reactive program may be viewed as a generator of computations which. for simplicity.
we may assume to be infinite sequences of states or events. In the case that the program
does terminate, we may always extend the finite computation it has generated by an
infinite sequence of duplicate states or dummy events to obtain an infinite computation.

An important approach to the specification and verification of reactive systems is
based on specifying a program by listing several properties, representing requirements
that the program ought to satisfy. This approach enjoys the advantages of abstraction
and modularity.

By abstraction we mean that, since the specifier lists separate properties and is not
required to show how they can be integrated or to worry about how they may interact with
one another, he is not tempted to overspecify or actually design the system. Consequently.
this approach leads to specifications which are free of implementation bias.

By modularity we mean that a property-list based specification is very easy to modify
by dropping, adding or modifying a single property. Also, the process of verifying that a
proposed implementation satisfies its specification can be done in a modular fashion. by
verifying each property separately.

Several formal approaches have been proposed over the years for expressing and ver-
ifying properties of programs, including the language of temporal logic [Pnu77. Lam8s3]
and the formalism of predicate automata [AS89, MP87]. The thecretical investigations
into the questions of the expressibility of the specification language and the completeness
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of the proof theory associated with these formal approaches grew into i laro.e h,,,iv of

knowledge. This may create the false impression that. all that body 4f knwvledzv 1l', -

sential for the application of the methodoiogy, and that a heavy investniet in I.ar!qiniI

all this theoretical material is necessary.
One of the points we would like to demonstrate in this paper i.• that a very little ieneral

(temporal) theory is required to handle the miost important properties of ctniurro-Nt
programs that ocr''r in practice. The types of properties on which it practI1,11q ifrif'Je I
typically spends the most time usually fall into a few simple classes. By p re-enit!nt a
simple but complete set of rules for verifying properties belohginii to each of 1 hese, ilW_-ses,

we provide the practicing verifier with precisely the tools that are neiededt. ('oleqilnt iV.
the approach we take in this paper is to circumvent the general theory of ten mporal lo1ic

and proceed as directly as possible to the introduction of the classes of properlIes !',at art,

most frequently verified and to the proof rules that are appropriate for their verificatilo

We consider three classes of properties. which we believe to cover most of the riropertite
one would ever wish to verifv for a reactive program.

To express the properties of programs. we use a specification language. whose huihilnp_

blocks are state formulas (also called assertions). These are first-order formulas which

describe program states that can arise in a computation.
The three classes we consider are:

* Invariance - An invariance property refers to an assertion p. and requires that p is
an invariant over all the computations of a program P. i.e.. all the states arising

in a computation of P satisfy p. In temporal logic notation, such properties are
expressed by op, for a state formula p.

* Response - A response property refers to two assertions p and q. and requires that
every p-state (a state satisfying p) arising in a computation is eventually followed
by a q-state. In temporal logic notation this :3 written as p=:.-0q.

e Precedence - A simple precedence property refers to three assertions p. q. and r. It

requires that any p-state initiates a q-interval (i.e., an interval all of whose states
satisfy q) which, either extends to the end of the computation, or is termin-ted by

an r-state. Such a property is useful for expressing the requirement that. fillowing

a certain condition p, event r will precede event q.

In temporal logic, this property is expressed by p=>-(-,q)Wr, using ihe waiting-for
operator (weak until) W. More complex precedence properties refci to a sequence of

assertions qo, ... , Iq-,,- and replace the requirement of a single q interval by requiring
a qo-interval, followed by a ql-interval, ... , followed by a qn i-interval.

We refer the reader to [MP91a] for a top-down approach, whihi presents the most general

proof rules possible. Here, however, we take the opposite approach of presenting rules

that are closely tailored for these restricted classes.

2 Programs and Computations

The basic computational model we use to represent programs is that of a fair transition
system. In this model, a program P consists of the following components.
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* = {ul .... u,)} A finite set of state' rarablts. Soni of t Iiese varialaicý rtprit

sent data variables, which are explicitly manipulated by the prograir text. Ot(her
vat ;ables are control variables, which rer resent. for example. the lo atlwti 4f c•ls ft

in each of the processes in a concj1 rent program. We assum CatiCh varinable . i,.

associated with a nonetiipt% ,iumain over which it ranges.

We define a statt ., to be a type consistent interpretat ion of I'. , t o n ,,

variable u E V a vdlue 4[u] over its domainl. We denote bY Y thee sul of ali a,

* (0 - The initial condition. This is a satisfiable assertion characteriztiv- all th , init ial
states, i.e., states at which the computation of the program can start. A state is

defined to be initial if it satisfies E).

* T - A set of transitions. Each transition r E T is associated with an a&sertioii

p,( VV'), called the transition relation, which may refer to both unprimed and
primed versions of the state variables. The purpose of the transition relation p- is
to express a relation between a state s and its successor s', We use the unprinted
version to refer to values in s, and the primed version to refer to values in s'. For

example, thf assertion x' = .r + I states that the value of x in s' is greater by I than
its value in s.

, 7" C 7 : A set of just transitions (also called weakly fair transitions). Intuitively. the
requirement of justice for r E 3 disallows a computation in which - is rontinually
enabled but not taken beyond a certain point.

We define the state s' to be a r-successorof the state s if the assertion p,( V, V") is satisfied
by (s,s'), the joint interpretation which interprets x E V as s[x], and interprets x' as s'ýxl.
Following this definition, we can view the transition r as a function -r : - 21, defined
by:

r(s) = {s' I s' is a -r-successor of s}.

We say that the transition 7- is enabled on the state s if r(s) j 0. Otherwise. we say that
r is disabled on s. The enabledness of a transition r can be expressed by the formula

En(r) : (3V')p,(V, V'),

which is true in s iff s has some r--successor.

We require that every state s E E has at least one transition enabled on it. This
is often ensured by including in T the idling transition r, (also called the stuttertng
transition), whose transition relation is p, : (V = V'). Thus, s' is a r,-successor of ,; iff

.5 = S.

Assume a program P for which the above components have been specified. Consider

0" : So, Si, S2,. .-

an infinite sequence of states of P. We say that transition r E T is enabled at position
k of a if r is enabled on sk. We say that the transition T is taken at position k if sk+1 il
a r-successor of sk. Note that several different transitions can be considered as taken at
the same position.

The sequence o, is defined to be a computation of P if it satisfies the following require-
ments:
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* InitIality: So is initial.

* Consecution: For each j = 0, 1. the -ýt ate s, is a 7-sucteSSOr (if thet, slatc ,,

i.e., s,+ E "(s), for Some 7 e T.

a Justice: For each transition r E T. it i- ,t the case that 7I runt i1riualx e,,ibled

beyond some position j in oa, i.e., -r is eniabled at every position k ., whiln - P,
not taken beyond j.

We say that a state s is P-accessible if it appears in some computation of 1'. " r
r-successor of a P-accessible state is also P-accessible.

We refer the reader to [MP9 1 b] for a more comprehensive notion of a fair i ranýsi-
tion system that specifies also a set of compassionate (strongly fair) transitions. Ihe'
requirement of compassion is relevant only for programs that use special svnchr•uiizat ion
constructs such as semaphores or message passing statements. In the examples presenit-d
here concurrent processes communicate by shared variables. so there is no need for the
compassion component,

We assume an underlying assertional language, which contains the predicate calculus
and interpreted symbols for expressing the standard operations and relations over some
concrete domains. We refer to a formula in the assertional language as an assertion.

For an assertion p and a state s such that p holds on s. we say that q is a p-state. For
a computation o : so, s1 , .. , such that s, is a p-state, we call j a p-position.

3 The Main Examples: Mutual Exclusion

For our main examples we use two programs that have been proposed as solutions to the
mutual exclusion problem.

The simple version of the mutual exclusion problem considers two processes that need
to coordinate access to a shared resource. This shared resource may represent a shared
variable or a device, such as a disk or printer, that needs to be accessed exclusively. i.e..
protected from interference.

Solutions to the mutual exclusion problem are presented by programs that contain
two concurrent processes. Each process contains two schematic statements: statement
Non-Critical and statement Critical. Statement Non-Critical represents the independent
activity of the process. It stands fir an arbitrary complex segment of the program that
represents all the processing that requires no coordination with the other process. It
is not even required that this statement terminates. Nontermination of the non-critical
statement corresponds to the situation in which a certain process needs no further access
to the shared resource. Statment Critical (usually referred to as the critical statement or
critical section) represents all the activity that has to be performed in protected mode. For
this activity, we require eventual termination. Nontermination of the critical statement
corresponds to one process appropriating the shared resource and never releasing it to the
other process. This is, in general, an unacceptable behavior.

An important assumption about both of these schematic statements is that they do
not modify any of the variables that are used in the protocol for coordination between
the two processes.

We present two solutions to the mutual exclusion problem.
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local ylIy2 : boolean where yj = F. Y, F
S : integer where =

f0 : loop forever do mi0 : loop forever do
Nl Non-Critical 71: Non-Critical I

(2 : T 7112  := T
(3. s := 1 Hrn- 1•: s• := '2 1

f4 await (--y.2) V (s 2) in 4 • await (1-y.l) V (s = I)
(5: Critical ?n j Critical
L 6: Yi := F in" Y2 := F J

P,- P 2 -

Figure 1: Program PET: Peterson's algorithm for mutual exclusion.

3.1 Peterson's Program

Peterson's solution to the mutual exclusion problem [Pet83] is presented in Fig. 1. The
basic mechanism protecting the critical sections is provided by the boolean variables yj
and y2. Each process Pi, i = 1,2. that is interested in entering its critical section sets its
y, variable to T. On exiting the critical section, the corresponding y, is reset to F.

The problem with this simple-minded approach is that the two processes may arrive
at their waiting positions, C4 and m 4 respectively, at about the same time, with both
Y1 = Y2 = T. If the only criterion for entry to the critical section was that the y, of the
competitor be false, this situation would result in a deadlock (tie).

The variable s, ranging over {1,2}, is intended for breaking such ties. It may De
viewed as a signature, in the sense that each process that sets its y, variable to T also
writes its identity number in s at the next statement. Then, if both processes are at the
waiting position, the first to enter will be Pi such that s € i. For i = 1,2. let j denote
the index of the other process. The fact that s = j means that the competitor, P1 . was
the last to reach the waiting position and therefore Pi should have priority.

3.2 Dekker's Program

Another program we study is Dekker's algorithm for mutual exclusion [Dij65]. This was
one of the earliest correct solutions (possibly the first) to this problem.

Similar to Peterson's algorithm, each of the processes in Dekker's solution. also uses a
boolean variable yi, i = 1,2, that expresses the interest of the process to enter its critical
section. Process A, starts by setting its y' variable to T. It then tests the y, value of
its competitor. If the competing y, is found to equal F, P, enters its critical section
immediately. In case of a tie, i.e., both processes have yj = T. we use a tie-breaker, the
variable t (short for turn). This variable ranges over {1, 2}, and the process whose number
is t has the higher priority. To ensure fair accessibility, process P, sets variable t to the
value corresponding to its rival on exit from the critical section.

Dekker's algorithm is presented in Fig. 2.
Let us follow Pi on exit from the non-critical section. This is where the protocol of

6



local y .Y2 : boolean where , = F. V2 = F

t : integer where t ==

C0 : loop forever do T,0 loop forever do
f, Non-Critical m' N Itn-( r•cial I
(2 l :.2T yl•' 2 := T T

3 : while y2 do r113  while Yl do
(4 if (t = 2) then r., : if t = I then

~ ~:~ =F 1a y, -u= F 1
Ca' await (t= 1) ri await 0 2i
f7" YI :=- T 707 T/

fs Critical ITZ : Critical
g9. t := 2 M ?: t := 1
Llo Yl F rn:10  Y2 := F I J

-P 1 - - V -

Figure 2: Program DEKKER: Dekker's algorithm for mutual exclusion.

coordination between the two processes starts. Process P1 sets at (2 its Yl variable to T. It
then enters a while loop that continues as long as P1 detects Y2 = T. Process P1 identifies
this situation as a tie. Tie breaking is accomplished by one of the processes recognizing

it has a lower priority, resetting its yi variable to F. and then waiting for its priority to
rise. This happens for P1 in f5-f4. On the other hand, if P , recognizes it has a hiaher
priority, it waits for y2 to become false. This happens for P1 in the tight loop consisting
of 63 and f4 where, due to t = 1, it never enters the region f5-47. Process PI enters its
critical section at t8 only when it detects y2 = F. After termination of the critical section.
P1 first sets t to 2 and then resets Yl to F.

4 A Program as a Fair Transition System

Let us consider how program DEKKER (presented in Fig. 2) can be viewed as a fair
transition system.

Below, we identify the four components of a fair transition system. namely, state
variables, transitions, initial condition, and justice set, for program DEKKER. This enables
us to view the program as a fair transition system, and to apply to it the verification
methods that will later be presented for general fair transition systems.

State Variables

The state variables V are given by

.Y, Y2, t.

Variable r is a control variable that ranges over sets of program locations. At, any state

of a computation of DEKKER, ri = {C,,mj}, for i,j ) {Cl0,.. 10}, whenever process PI is

7



currently in front of the statement labeled f, and P2 is currently in front of t lie >taT'en•tit

labeled in,.
Variables yi. y2, t naturally represent the current values of the corre.pondirin pro-grain

variables.

Initial Condition

Tile initial condition -0 is given by the assertion

0- : 7,= {IfnoI}) A -y1 A -y2 A U = t )

Thus, at the initial state of the program, the two process"- reside at their initial locat ions
o. i0n0. the two boolean variables yl, y2 are initialized to F. and t is initialized i o I.

We introduce several abbreviations for referring to the location of control.

atf, _ £ n{f o ... o} = {'}

at-_, r in fl ..{ 0 . .m. = {m-}

Thus, at_ i implies fi E ir and also that ij ý r" for any j i. Similar implications hold
for atr-m.

To express the movement of control effected by transitions. we use the following
abbreviations:

rnove(f,, f,) :atJi, A (7r' = 7r- {i}U f}
rnove(m,,M,) at -, A (-t' = r - {fm,} U {Ir,})

Clearly, move(li, ej) describes the movement of process P, from i, to •j.

Transitions

In order to avoid tedious repetition, we will present only some of the transitions for
process Pl. We will concentrate on the transitions that correspond to the different types
of statements appearing in the considered program. We refer the reader to [MP9lb] for a
fuller account of the transitions corresponding to the different types of statements.

In defining the transition relation p, corresponding to the transition r, we adopt the
convention by which a variable whose primed version does not appear explicitly in the
formula is preserved by the transition. Thus, if y is a state variable and y' does not appear
in p,, the clause y' = y is considered as an implicit conjunct of the formula.

There is precisely one transition rl, corresponding to each statement f, in P1 . and
one transition r,, for each statement in P2. We denote their transition relations by p,
and pm,, respectively. Transition relations that have two possible actions as a result of
testing a condition, such as a while or a conditional statement, are usually represented as
a disjunction pT V pF, where pT represents the case that the test evaluates to T. while pF

represents the case that the test evaluates to F.

Sp, : move(fo,£f)
This transition corresponds to the case that P1 is at, fo and moves inside the loop
statement.

8



Sp, : movc(f,,'J2)

This transition represents the termination of the non-critical section.

"P, :M0oVe(f 2 ,f 3 ) A (y' = T)

This transition corresponds to the case that process P, moves fron , to i wh
setting Yl to T. Similar transitions are inchided for the assignment •talfnOnt -

and £9.

"* p r3  V P/F, where

pT, .uoce(g1 3 ,f4) A y2
Fp•: move(f 3 , (s) A -y2

The first disjunct of this transition relation ,orresponds to the :ase that the test ,f
the while statement holds (i.e., y2 = T). In this case P1 moves to 14. Th sIc,,n
disjunct correspoiids to the case that the test evaluates to F. as a result of which.
P1 moves to £8.

' p14 :p4 V p4 , where

T
P1, move(f4,£s) A (t = 2)
PeF rnve£ ^ £)(t$#2)

If t = 2 then, according to pT, P1 moves from £4 to £5- Otherwise it skips the body
of the conditional statement and returns to the while statement at f'3.

pt, :move( 6 , f7 ) A (t = 1)
The transition corresponding to the await statement at £6 is enabled onlv if its
condition t = 1 is true. When taken, it moves irom f6 to £7.

* p, 7 : move(f7 if 3 ) A (y' = T)
This transition sets yl to T and moves from f7 to the beginning of the while statement
at f3.

* Pt8 : move(t 8 , 9q)
This transition represents the termination of the critical section.

*p0 : move(0io, to) A (y^ = F)
This transition sets y, to F and moves to to to repeat the body of the loop.

A similar set of transitions corresponds to the statements of P2.
In addition to the transitions corresponding to statements of the program, we include

the idling transition r7, whose transition relation, according to our conventions, can be
written as:

p, : T

9



Justice Set

As the set of just transitions, we take all the transitions except for 7-, 7-,. awl I
Transition r, is excluded since it is necessary only if no other transition is ,qlaie(L and q
there is no reason to insist that it will be used.

The exclusion of transitions -q, and ,, from the justice set alhows e'it or t.!)(
processes to remain continuously in its non-critical section from a certain point orn. N\ot
that including r4, and 7,,, in the justice set guarantees that each exxecutioti o w le rr',icai
sections must terminate.

5 Invariance Properties

An invariance property is a property that can be specified by a for"iula of tihe form

Op,

for an assertion p. In this section, we present several rules for proving the vahidityv of
invariance properties over all computations of a program P.

5.1 A Basic Invariance Rule

For a transition r and state formulas p and q, we define the verification condition of r,
relative to p and q, denoted {p}r{q}, to be the implication:

(p, A p) - q',

where p, is the transition relation corresponding to 7, and q', th- primed version of the
assertion q, is obtained from q by replacing each variable occurring in q by its primed
version. Since p, holds for two states s and s' iff s' is a T-successor of s, and q' states that
q holds on s', it is not difficult to see that

if the verification condition {p}r{q} is valid, then every r-successor of a p-state
is a q-state.

For a set of transitions T C T, we denote by {p}T{q} the conjunction of verification
conditions, containing the conjunct {p}r{q} for each r E T. In particular, {p}T{q}
denotes the conjunction of verification conditions for all r E T.

The following abbreviations are used to refer to the location of control in r', i.e.. after
the transition.

at' ii: 7r'n { 0,...,t 0} = {IQ}
at'_mi :rfl mo...,mio} = {mn}

Since the transition relation p, often contains a conjunct of the form movre(,,. we
list below some implications o.' this formula. They can be used to simplify verification
conditions.

move(fi',t) implies: 0 at_ýi, -,atiJk for all k 54 $.
" at'_t, ,-at'jk for all k : Ij.

"* at'rnk 7- atrink for all k.

Symmetric implications follow from move(mi, inj).

10



The Rule
A. basic ruVtur prIv i iivariaNICe properties is rule B-INV

B- I NV t asic I tivaria-ice ru I
Bk. 0 -. 1,

Prenii se B I of rule ii-iN ensures that p holds in t Ie first -tate , t" I a ,ot ,t 'ation , , I .
is implied hYv 0. Premise B2 ensures that any successor of a p i t ate a state t, i'! V I
is also a -'stiate. 1" follows that p hold-; on all states- 4f 'verv conputlallit)[ 0n P rr" at
alnd. therefore. :p is valid over V.

Exam ple

(Consider an ab)stract fair transition svsten .'t with a Sinygle state variable r. a,; initial
Condition r = 0. and a single transition - whose transition relation is 1i yen by P X
.r - 2. Not!e that 7 is always enabled and can be taken an unlimited numbnter of iiIn,,'s.
This system has a single computation, given by

S. o) •(x ,(. : 2) ..

We wish to prove for this system the trivial invariance property

X >0.

To prove this property, we use rule B-INV with p " (x > 0). The rule requires showing tihe
validity of the following two premises:

BI. x =0 - X >0
B2. x'=x+2 A x>0 - x'>0

('learly. these two implications are valid. which establishes the invariance of X > 0[

5.2 A Rule for Incremental Proofs

An assertion p that satisfies premises BI and B2 of rule Bi-INV is called inductzit. Rule
B-INV claims that every inductive assertion is invariant. However. the other direction of
this claim is not true. There may be invariant assertions that are not inductive. For
example. the assertion p : x 7:ý I is invariant over system . I described above, but is not
inductive. This is because premise B2 for this choice of p is not a first-order tautology.

One remedy to this situation is provided by strengthening. We find a stronger assertion
i.e.. an assertion that implies p, which is inductive. Rule B-INV is used to establish that
is invariant, and then we use the monotonicity property of invariance for. ýulas given

by rule MON-INV.

Rule MON-INV (Monotonicity of Invariances):

11



For example. to prove the invariance of p . r ( ,ver -v..t -n , i., '., ,%r
stronger assertion 7 : tr .rX) and show Thal It IP 11 i .tiV , Ri. I IN\ k,'k-t BiAN%
invariance of ,r. Observing hat e rti x 1. lt) i 1. • I, fit r,.- t k,.lItwŽs b v ri-e M, ) IN \

An alternative approach to prov ini I i varianf'e t ()Ind I I cI Iit .t'r iva t - p,,,11,1 ,T ,
by rule INC-INV.

IN(-IN\ i, r iiit' w.ti r-ulct
IL z. • .... ,

12. 09--

13. * A /\ rT{p1

The rule assumes that several invariants. ,.. .. have been proven be-fore. ;,.i[ I,
by previous applications of rules B-INV and INC.-INV in combination with M\oN -IN\ lhe.
premise 1:3 establishes a verification condition whose left-hand side cn t ai1 the, ,,10
tien A ;, in addition to the assertion p. Assume that a -•0. s .... is a coniputatld 4
program P. and that premises 11-13 are valid. Then premise 12 ensures. as before. that
assertion p holds at S0 . Let s, be a p-state. Since assertions .r• ...... P. are itivariaiit over
P, s, satisfies the conjunction p A Ar;,. By premise 13. s,+, satisfies p. It follows that any
successor of a p-state is also a p-state. and therefore. p is invariant over 1'.

5.3 Mutual Exclusion for Peterson's Program

We use the presented rules to establish the main invariance property of program PET.
This is the property of mutual exclusion, stating that processes PI and P, cannot execu•f'
their critical sections at the same time. It it specified by the invariance formula

C-(at-fs A at-ms).

Thus. we have to show that assertion q : -(at-fs A at-m 5 ) is invariant over program PET.

Simple Range Invariants

First, we establish a list of invariants that restrict the range of values that variable .. may
assume and relate the values of Y1. Y2 to the locations of P1, P2, respectively.

To facilitate the expression of these invariants, we introduce the following abbrevia-
tions for k < r:

attk., at-ik V at-1k+1 V ... V at-f,

at-mk.., at-Mk V at-mk+l V ... V at-m,

The assertions whose invariance states the described range restrictions are:

P0  s=I V s=2
ý01 : Yg 4 at- 6 _6

01" y2 • at-m 33_ 6

Assertion Vo states that s can only assume the values I or 2. Assertion • states that
y, = T precisely when P1 is executing at one of the locations f3-4. Assertion I '1 states a
similar property for P2 .

12



Let us see, for example, how the invariance of an assertion such as I '2
is established. We apply rule B-INV with p = ru. There are two prelllises to \erif".

Premise 11 requires showing that 0 = { ,,-my} A - " Y: A . It .
assertion s = I V s = 2. This is obvious.

Premise 12 requires consideration of the vernlication condition lp. , - r

every transition Tr in the program. There are some simple heuristics that l! u, discard
immediately many transitions as automatically glaranteed to preserve l Hnpll ri o ifl ,i,
and most effective one is:

All transitions that do not modify any of tile variables on which d ,epeinsi>
are guaranteed to preserve :.

This heuristic leads immediately to the conclusion that. for the assertniun ,:.=1 , = 2.
we should only be concerned with the transitions that modify ,. T hlise are an, dmd r,.
The verification condition for f( can be written as

"AAs'= I A I --* =
P13 0rO•'ro"

which is obviously valid. The verification condition for 7n3 is similarly valid.
We thus conclude that the assertion ro : s = 1 V s = 2 is an invariant of the program.

As a slightly less trivial case. let us establish the invariance of assertion ? : • -

at-6_6 . Let us concentrate on proving premise 12. While the expression at_3,;j is defined
in terms of the control variable 7r that is modified by every non-idling transition of the
program, it is not difficult to see that the only transitions that affect the value of the
expression at-J3 ..6 as a whole are those that either enter or exit the range 63-e. ('onse-
quently, we only have to consider the transitions e2 and 16. Their veritication conditions
can be written as

move( 2, f 3) A y' = "T A ... ---, at

move(f6, Co) A y' = F A .. -+ Y-+ atJ3 ..6
O ~~Y +- +i ,

Since move(f 2 ,fa) implies at'_6, from which follows at'6-..6, and move(i. fo) implies
at'fo, from which follows -at' 6-6., these verification conditions are valid.

ft is clear that these are the only transitions that change the values of variable y. or
the expression at-6.._ 6 on which ýP1 depends.

We conclude that V, : yj -*+ at-f 3 6 is an invariant assertion.

An Incremental Proof

Now, let us consider the main invariant assertion q : -(at-is A at-ms). We begin by at-
tempting to prove it by rule INC-INV, taking tlb as a previously proven invariant assertion.
Premise 12 is trivially valid. For premise 13, we identify the only relevant transitions as
f4 and in4 . The verification condition for t 4 can be written as

move(F4 , e,) A (--y2 Vs = 2) A -(at-f 5 A at-m 5 ) A y2 +-+ at..rn,3 6 - --(atJs A at'_rn7.)

P014  
P
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Since mot'f(i 4 , ý5) implies at. 4, -'ati'.. (it'_ 1. and atQ 7i = itrie,,. We Cai 'llniiyify
implication to

atf 4 A , 2 -- -,at-nz.

which, in view of 'ro : s I V s 2, can be written as

aLt- 4 A atjrs -- , = s .=

Obviously, implication (I) is not a first-order tautology. (ConsequnitINtl. if we i,•elev Ihat
q : -,(atJ.5 A at-nis) is an invariant of program PET. wt- should adopt (I I) aint her

invariant assertion. By this and a symmetric argument for P-. we addi , the lis of

invariant assertions the following two assertions:

":'2 :atd' 4 A atm 5  ---, s= 1
(.'.2 at-fS A at-n 4 -- , s = 2

It is also clear that if these two are invariant then they complete the proof of Invarial-",
of q : "(atL(s A at-n 5 ).

Let us use rule INC-INV to prove the invariance of ,2. We use the previously pro.ven
invariant yj " +-4 atE 6 -.. Premises 11 and 12 are obvious. For premise 1:3. the only
crucial transitions are f3 (changing atf 4 from F to T), m 4 (changing atyn,ý to T, arid
?n3 (setting s to 2).

The corresponding verification conditions are

"A s' . ' A.

P13

Move(M 4, ms) A (-,y Vs=l) A ... A Y I- a_ 3 6. -* '_4 A ...-. '= I

0- 4

rnoveem 3,m 4 )A... A "' -. .. A at'm

Pm 3

The verification condition for 13 is trivially valid. In the verification condition for i74 .

move(m 4, ms) implies at'4 4= atL 4 , and s' = s. If at-f 4 = F, then the condition is true
since at'_ 4 A ..-- s' = 1 reduces to F A - s' = 1. If at-f4 = Tthen. by -. = T
and, therefore, the clause --yi V s = 1 implies s = s' = 1. The verification condition for
m 3 follows from the observation that move(m 3, m 4 ) implies -,at'_ms.

This establishes the invariance of assertion (P2 : atJf 4Aat_m 5 - s = 1. The invariance
of W'2 : at..4 A at.m 4 - 3S = 2 is established in a symmetric way. This concludes the
proof of mutual exclusion for program PET.

5.4 Mutual Exclusion for Dekker's Program

We proceed to establish several invariants for Dekker's program, which together yield the
desired mutual exclusion property.

14



Simple Range Invariants

First, we establish a list of invariants that restrict the range of values that %&riabLh- tI i

assume and relates the values of y1 , y2 to the locations of P1. P,. respectively.

:0 :(t=) V (t = 2)
"7:1 y: -4 (at-.. 5 V at-s(..io)
L1'1 : y!/2 * (at-rs..5 V at-m 8 .,0o)

Invariant ;o states that t can only assume the values I or 2. Invariant ,,7• states that Y, T

precisely when P, is executing at one of the locations 634f5 or at one of the locations iA -6,-

Invariant W,' states a similar property for P2., All three of these assertions are inductiv'.

Proving Mutual Exclusion

After establishing the range invariants, we proceed to establish the main invariance prop-
erty of Dekker's program, namely, that of mutual exclusion. Instead of only forbidding
joint execution of statements f 8 and m8 , we prove a stronger exclusion property, given by:

q : -,(at-fs..1o A at-ims.. 0 ).

This assertion establishes mutual exclusion of the regions Gs.- 10 and ms0io.
To show that assertion q is preserved under all transitions (i.e.. premise 12 of rule

B-INV), we use the following heuristic:

To show that the assertion PO is preserved under all transitions. it is sufficient
to consider only those transitions that may potentially falsify •, i.e., change
from T to F.

Since assertion q is equivalent to the disjunction, -at_..s.. 1 o V -'atn 8s.1 o, and each
transition in the program can change at most one of the disjuncts but not both. the only
potentially falsifying transitions are those that falsify one of the disjuncts while the other

is already false. Consequently, we need only consider transitions 63 and m 3 in the cases
that the respective while conditions are false. This leads to the following verification
conditions:

move(06J, C8) A -Y2 A ... -+ -'(at` fs..1 o A at'_rns.Io)

PF13

move(m 3 , Ms) A -'yi A "'" -A -'(at'gs..10 A at'mi.. 10 )

Consider the case of pl,. Since, move(g3, f8) implies at-•fC3 = at's = T and at' rn8.o

at-m...m o, it is sufficient to show

-Y2 -4 at-m8.10,

which follows from i' 1 : Y2 +-+ (at-rn.. 5 V at-m&.io). The condition for p, is established

in a symmetric way.

This proves the property of mutual exclusion for Dekker's program.
As we will see below, additional invariants are needed for the proof of the response

properties of program DEKKER. We will develop them as they are needed.
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6 Response Properties

Next to be considered is the class of response properties. The typical response, proper•y
is expressed by the formula

p = q,

for assertions p and q. A sequence of states or is said to satisfy the response form ila
p=*.-Oq if every p-position i > 0 is followed by a q-position j > i. Such a response forrmula
is said to be valid over the program P (also called P-valid). denoted P ( (p1)q). if all
the computations of P satisfy the formula. This means that every occurrence of ia state

satisfying) p in the execution of P is followed by an occurrence of q. We will often omit
the prefix P k= when stating the validity of a response formula over P.

The temporal logic adepts will recognize =ý-O as the combination of the two operator'
- and 0 (see for example [MP89]). However. for our purpose here it suffices to view it

as a single binary temporal operator, whose semantics has been defined above. It is very

similar to the leads-to operator of Unity ([CM88]).
The following axioms and rules identify the basic properties of the rcsponst operator

Axiom RFLX (Reflexivity of Response):

p •-, p

This axiom expresses the fact that every p-position is trivially followed by a p-position,
namely itself.

Rule TRNS (Transitivity of Response):

{p=•,-Z>q, q=-Kr} - p= ,-O r

This rule states the transitivity of the response operator. It claims that if every p-position
is followed by a q-position, and every q-position is followed by an r-position, then certainly
every p-position must be followed by an r-position.

Rule MON-RESP (Monotonicity of Response):

{p=q,-*q p, q -. 0} •=>-

This rule allows us to replace in a valid response formula the antecedent p by a stronger
assertion ý, and the consequent q by a weaker assertion q, and obtain another valid

response formula.

Rule DISJ (Disjunction of Response):

{p -<r , q=-r)} - (pV q) =>-Or

This rule combines the two response formulae, p=ý-Or and q=*'-K>r, into the formula
(p V q) =*-Or. It allows us to prove the last formula by separately considering the case
that p holds and the case that q holds. In this way it supports proof by case analysis.
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local x.y integer where x =0 , y =

[o while £ = 0 do 1X n
P, :: [ Y := y+ ±1] J P2 j

Figure 3: Program TERM: A terminating program.

6.1 The Basic Response Rule

The axiom and three rules listed above are independent of the particular proaram ana-
lyzed, and describe basic properties of the response operator. We now present a rule that
enables us to establish the validity of a response formula over a program.

The rule singles out a particular just transition 7h E J. to which we refer as ihe
helpful transition. It can establish response formulas p='-cq that can be achieved by a
single activation of the helpful transition 7h. We therefore refer to this rule as the ba.-us
or single step response rule. The rule uses the auxiliary intermediate asscrtion Y whifch

describes the situation between the occurrence of p and the occurrence of q.

RESP (Basic Response rule)
R1. p --+ (q V sý)

R2. {O}TjqV,'}
R3. {o}.7h{q}
R4. ýO -- En(rh)

p =*- q

Premise RI ensures that p implies q or P. Premise R2 states that any transition of the
program either leads from ýO to q or preserves ý0. Premise R3 states that the helpful
transition Th leads from P to q. Premise R4 ensures that rh is enabled as long as : holds.

It is not difficult to see that if p happens, say at position i > 0, but is not followed by
a q, then ;P must hold continuously beyond this position, and the helpful transition 74 is
never taken beyond i. The latter fact follows from premise R3, which states that taking r14
from a 'P-state immediately leads to a q-state, contradicting the assumption that q never
happens beyond i. However, due to R4, this means that rh is continuously enabled but
never taken beyond position i, which violates the requirement of justice for 7h.

Example

We illustrate the application of rule RESP on program TERM presented in Fig 3
This program consists of two processes, P1 and P2. Process P1 continuously increments

y while waiting for x to become nonzero. Process P2 consists of a single statement,
assigning 1 to x.

The response property we wish to establish for this program is that of termination.
It can be expressed by the formula

(at-to A atmto A x = 0) .*--O (at-f 2 A at-m 1 ),

that states that the event of being at the beginning of the program (at-fo A attmoo) is
eventually followed by the event of being at the end of the program (at -f2  at T- r).
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This property is established by a sequence of lemmas, each applying one of the ruie-s

presented above.
Lemma 1 (x eventually set to 1)

(at-fo A atnmo A x = 0) - (at-foi A at-m1 A xr =

This lemma claims that variable x is eventually set to I by process P.. wilcil then

moves to hi1 . When this happens. process PI is still executing within the loop i4,.

To prove the lemma we choose

p at_(oAatio A.r =0

,P :at-oj A at-Ttoo A x" = 0
7"h : Tm0

q at-( 0 1 A at-ni A x = 1

and apply rule RESP.

It is not difficult to see that p implies 'P. It is also clear that taking 7,,, from a "-state

leads to a state satisfying q (establishing premise R3). and taking any other transition.

i.e., reo or 71, preserves ,P (establishing premise R2). Obviously ', implies that r,, is

enabled (establishing premise R4).

Lemma 2 (from to to t2)

(at-to A atm Ax = 1) •'-O (ate 2 A at-ml)

Follows from rule RESP, by taking (P = p and Th = 71,

Lemma 3 (from tj to to)

(attjAatrnm, Ax= 1) =:-O (at-toAat-ml Ax= )

Follows from rule RESP, by taking 'P = p and rh = r1,

Lemma 4 (from f, to f2)

(at-ii A at-mi A x = ) • (at-t2 A at-mi)

Follows by transitivity (rule TRNS) from Lemma 3 and Lemma 2.

Lemma 5 (from t(,, to (2)

(at-fo,1 A at.m1 A x = 1) ='-O (at-f 2 A at.m l )

Follows by rule DISJ from Lemma 2 and Lemma 4, using the equivalence

at-fo A at.rmn A x = I

(at-tOl A at.m 1 A x = 1) * v
attj 1 A at-m 1 A x = I

Lemma 6 (from {Io, Mo} to {f2,m 1})

(at-eo A at-mo A x = O) =:-O. (at-t2 A at-mrl)

This lemma, which establishes the termination property, follows by rule TRNS from

Lemma 1 and Lemma 5. J
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6.2 The Chain Rule for Response

The basic response rule supports the proof of response properties which 4,tr tai li-ii
by a single helpful step. As we have seen. even the simple example abve require- *evverai
helpful steps to achieve its goal. i.e.. termination. When the number of helpful -t,.
required is small and fixed we can use a sequence of lemmas. each (-onsidleriln, a -iM,!J,
helpful step. and then combine their results by transitivity and case split tilý, llhwcver.
for the case that a large number of helpful steps is required. we introduce below a mort,
powerful rule that ailows us to combine the helpful steps.

The following rule for establishing p= -Oq uses several intrrilodiab atssvrlionm tha
hold between the position satisfying p and the position satisfying the goal q. We denotel
these assertions bv ,;,. where i = 1. r. Each intermediate assertion , is as1sciatI
with a just transition ri E J. that is identified as helpful for ,:,. For uniformity. we define
",:o : q.

We can interpret the index i of the intermediate assertion -, as a neasure (if The
distance of the current state from a state that satisfies the goal q. Thus. the lower Ihl,
index, the closer we are to achieving the goal q. For a state s. let ,, be the intermediate'
assertion with the smallest i s.t. A holds on s. We refer to the index 1 as the rank of
state s.

Assuming that these constructs have been identified, the following rule establishes the
P-validity of the formula p=ý-Oq.

CHAIN (Chain Rule for Response)

C1. p- V t
i=O ..... r

C2. VY,

C4. P, -- En(-r)
p =*--O q

Premise C1 requires that p implies that one of the intermediate assertions 4, (possibly
ýO0 = q) holds. Premise C2 requires that taking any transition from a A,-state results in a
next state which satisfies •,, for some j <_ i. Premise C3 requires that taking the helpful
transition ri from a 4p,-state s results in a next state which satisfies •% for j < i. i.e.. a
strictly lower rank than that of s. We can view premise C2 as stating that the rank never
increases, while premise C3 states that the helpful transition guarantees that the rank
decreases. Premise C4 claims that the helpful transition 7i is always enabled on any state
satisfying 'P1.

Assume that all four premises hold. Consider a computation a' and a position II
that satisfies p. We wish to prove that some later position satisfies q. Assume to the
contrary that all positions later than m (including m itself) do not satisfy q. By ('I
and C2 each of these positions must satisfy some P, for j > 0, to which we refer as the
rank of the position. By C2, the rank of the position can either decrease or remain the
same. It follows that there must exist some position k > m, beyond which the rank never
decreases.

Assume that i is the rank of the state at position k. Since q is never satisfied and
the rank never decreases beyond position k. it follows (by C2) that ,,A, holds continually

19



beyond k. By ('3. r, cannot be taken beyond k. because that would have led to ; ,ank
decrease. By ('4. 7, is continually enabled beyond k yet. by the argument aboVe. it it
never taken. This violates the requirement of justice for -,.

It follows that if all the premises of the rule hold then p= ,Oq is P-valid.

6.3 Presentation of Proofs by Tables

When presenting a proof by rule CHAIN. we usually do not write down a detailed proof
of each of the premises. Typically. it is enough to identify the intermediate assert ioi ,

.: 1 ..... ,:r and their corresponding helpful transitions rl . . . . . . To convintce the reader
that the effect of each transition on each intermediate assertion has indeed been ,ow'ifl-
ered. we augment the list of assertions and helpful transitions by a tran.sitiion tabl, that
indicates which transitions may lead from •, to g, for the various 1.j =0.......t3v in-
specting this table, and finding out that transitions always lead from t to - with
and that helpful transitions always lead from .;, to .7, with i > j. and that all Iransit IoH,
are accounted for, we gain greater confidence in the correctness of the proof.

Alternately, if we doubt the correctness of the proof. the transition table mentioned
above provides us with a list of claims that can be checked one bv one.

Let us consider the proof of the response property

(at-Eo A at.rno A x = 0) = (at-g 2 A at-Tni)

for program TERM presented in Fig. 3. Previously, we have proven this property by
individual applications of rule RESP. Let us now present a proof of the same property by
a single application of rule CHAIN.

As intermediate assertions and helpful transitions we choose:

I Pi 7,

3 at-foj A attno Ax = 0 mo
2 at-t 1 A atm. 1 Ax= 1 f
I atjoAat-rnm A x I to
0 at_ 2 A at-ml

Next, we present a transition table that shows which transitions may lead from one
intermediate assertion to another.

VP3 V2 (Pj1 ____

'P 4, el mo m0

ý02

The meaning of this table can be interpreted as follows. If transition r appears in
the row corresponding to (Pi and the column corresponding to Y%, we say that t% is a r-
successor of ,, and also that r leads from (P, to _,. A transition that appears underlined
in the row corresponding to Vj is identified as the transition that is helpful for .

For an assertion (Pi, i > 0, and a transition r, let Ojp,... , , be all the r-successors of
Vi. This implies that transition r can lead from any (P,-state only to states which satisfy
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one of - . . I,:. We define the verification condition implied by the lable for ;,mi -

to be
7A}r•, V ... V ,.

Bv convention, a transition r that on"l leads from , to itself is not. represent(ei
explicitly at row Aýj. This means that any transition not appearing in row >ati hei Ihe
verification condition

Note that if r is disabled on all Y:, states then it also leads from Y, to itsevf. Th.e
corresponding verification condition p• A , - , holds trivially since lie anteceden-

false. Thus, such transitions do not appear in row A,.
We define a transition table to be wtul-formed if

* Each row for ,:,, i > 0, contains precisely one underlined transition. which may
appear in more than one column.

* If r leads from :i to :,, then 1 > j. and if r is underlined, then z > j.

A transition table is defined to be sound with respect to assertion p if all the verification
conditions implied by the table are valid and

*P- V so,
i=O .... r

* If r is the transition appearing underlined in the row for assertion A,. for 2 > 0.
then APi --+ En(ri).

Obviously, a well-formed transition table that is sound with respect to p establishes
the P-validity of the response formula

P =ý-o Vo.

Thus, the table above presents a proof of the property

(atto A at-mo A x = 0) =4-O (atJ 2 A at-m).

Note that the more detailed information provided by the transition table enables us
to consider for each Vi and r the more refined verification condition

(1p, A p,,) --+ ('j V ... V V,,)

instead of the condition required by premises C2, C3, which is

(,P A p,) --+ (Wk V Wk- ) ... V '1o),

where k = i - 1 for the case that r is helpful, and k = i otherwise.

6.4 Presentation of Proofs by Diagrams

An alternative but equivalent presentation of proofs by rule CHAIN can be provided by
proof diagrams. Proof diagrams convey essentially the same information provided by
transition tables, but they do it in a more visual manner that helps to trace the progress
from p to q along a sequence of intermediate assertions with decreasing indices.
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Flat Diagrams

First, we conss:der thie representation of transition tables by fiat iutstrucI uredl) diagraii>.
These diagrams are labeled directed giaphs constructed as follows:

"* For each assertion ,;i,I = 0 .... r, we construct a inode aiid label it 1) r,.

", For each transition r leading from ý, to ;:. we construct an edge connectlinq th,
node labeled by ,, to the node labeled by v,. and label the edge L% 7. If 7 is helpfnl
for ,;, the edge is drawn using a double line. and we refer to it as a d(A')t, ,dA' .
Otherwise, the edge is drawn using a single line. and is called a ninq#o dyo.

In the case that more than one transition leads from l', to ra" we draw only one eitie and
label it with the set of these transitions. This is considered to be equivalent to t lIe graph
in which there is a separate edge for each transition. If among the transitions leading from
'ý, to • there is one which is helpful but the others are not. it is necessary to draw twtu
edges between the corresponding nodes: one double edge labeled by the helpful transition
and one single edge labeled by all the rest.

In Fig. 4 we present a flat diagram representing the transition table presented above.

CM 3: . atJ 0o A at-mo A (x = 0)
3 at -2))

1,0: at-to1 A at...m 1A (x ==1)

Figure 4: Flat proof diagram for program TERM.

For a transition r that labels an edge connecting a node labeled by 1, to a node
labeled by pj, we say that Pj is a r-successor of Oi in the diagram.

Verification Conditions implied by a Diagram

As in the case of transition tables, a diagram implies a set of verification conditions that
are more detailed than the uniform conditions generated by premises C2 and C3 of rule
CHAIN. The verification conditions implied by a diagram are defined as follows:

e Assume that 7- labels at least one edge departing from A,, and let t:,.... ";%,, I> 0,
be all the 7r-successors of Pi. Then the implied verification condition is

( I V ... V }
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e For a transition r that does not label any edge departiun fro• ;.. 'he implitd
condition is

A diagram is defined to be well-formed if

* Each non-goal node 1i, i > 0. has at least one double edge depari in a fron, it: ;11 4
then must be labeled b, 'he same transition.

* i > j whenever an edge connects -, to .P. and i > I when this edge i' dtwilie.

A diagram is said to be sound with respect to assertion p if all the verification ,cu'iti(iOii
implied by the diagram are valid, and so are the implications

P
i=0 ... r

o A transition r labeling a double edge departing from ', implies the condition

;, -+ En( r)

A well-formed diagram that is sound with respect to p establishes the P-validity of the
response formula

p =ý-O V0o.

Structured Diagrams

When considering large and complex programs, the flat diagrams we have introduce above
tend to become cluttered and unwieldy. We therefore introduce several graphical conven-
tions, following the style of Statecharts suggested in [Har87]. These conventions can be
described as encapsulation conventions. They lead to more structured and hierarchical
diagrams, which may considerably improve the readability and manageability of la-ge and
complex diagrams.

Composite Nodes

The basic construct of encapsulation is the introduction of a composite node containing
one or more internal nodes. We refer to the contained nodes as the descendants of the
composite node. Several levels of encapsulation are allowed. We refer to the nodes that
are not composite, i.e., do not contain any internal nodes, as basic nodes.

It is possible to associate an assertion with each node in the diagram. With the basic
nodes we associate the assertions labeling them. With the composite node n we associate
the assertion which is the disjunction of the assertions associated with the descendants of
n.
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(D ©

Figure 5: Distribution of departing edocs.

Distribution of Common Edges

We allow edges to depart from or arrive to composite nodes. The interpretation ol fan
edge departing from a composite node is that it is equivalent to Identically laheled, oterus
departing from each of its descendants. This interpretation is represented in the grapihical
equivalence presented in Fig. 5.

Note that this is fully consistent with the interpretation of a composite node &s re'p-
resenting the disjunction of the assertions of its descendants. The diagrain on the left uf
Fig. 5 can be interpreted as implying the verification condition

{";i V ý2} TO}

since the assertion associated with the composite node is yI V ;2. The diagram on the
right implies the two verification conditions

{I} -r {i} and {f2}~rl1}.

Obviously, the first condition is equivalent to the conjunction of the other two.
Similarly, we interpret an edge arriving at a composite node as though it arrived

at each of its descendants. This is represented by the graphical equivalence depicted in
Fig. 6.

Figure 6: Distribution of arriving edges.

Again, both diagrams represent the verification condition:

{(P} 7- {VIk V 4,12}.

These conventions apply to double edge as well as to single edges.
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Distribution of Common Conjuncts

A la.st encapsulat •on convent ion allows tht, reimloval otf a ct ju tinti 'at i , c•,,( 1 ,,! '1 lit

assertions of all the descendants ut a cOll)posilt. no ', and 1i~t , '0 1t , he i ,,K t,
composite node. This transforination is described bv the £r; plirl ,Ic t•it •i
in Fig 7.

rQ GD
0 GD

Figure 7: (Common conjunct.

Thus, any structured diagram is equivalent to a fiat diagram. Consequent lY. the
notions of well-formed diagrams and the verification conditions implied by a diagram are
meaningful also for structured diagrams. It is possible to check whether a given structured
diagram is well-formed, or to list the verification conditions implied by such a diagram
without actually constructing the equivalent flat diagram.

In Fig. 8 we present a structured version of the proof diagram previously presented
in Fig. 4.

(ý3 at-io,l A at-mno Arx =0O

at-rn, A.r = 1

ý9o at.., 2  A atm1.

Figure 8: Structured proof diagram for program TERM.

This diagram contains a single composite node, whose descendants are (labeled by) r-2

and ý;. The double edge labeled by m0 , connecting ýP3 to this composite node, represents
the two edges connecting 'P3 to the nodes 'P2 and mP, in the diagram of Fig. 4. Note also
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the common conj nct atitm, A x = 1, that has heell factored wit otf h,' Wo (e), ,,•t.
and now labels the composite node

6.5 Accessibility for Peteron's Program

The main response property for mutual exclusion progorams is thalUt f .'sbt! . I iof>
property states that whenever a process departs from its noon-criti vat cclion iz ,
teed to eventually reach the critical section.

For program PET of Fig 1. this property can be expressed }bv thic rspowse, fto, liu

at-g,2 =* at_,fs.

In the response proof we make use of the assertion

L-11 ' Y .2 -• at- "1 3.- 6

proven to be invariant in Subsection 5.3.
In Fig. 9 we present an assertion diagram for the proof of this response propervy.
The diagram traces the progress of P1 from f2 to [s. Process P, can progress fr(,m Ki

(,,s) to £3 (,r) and then to (4 with no interference from P2 . However, once location f4 is

entered. it is necessary to analyze the precise location of process P2. On entering/ f, f.
may be in any of its locations too-m 6 and s is set (by transition 1.) to 1. This range of
possibilities is covered by assertions (nodes) P2-P 6. We use the invariant assertion U', to
assign the appropriate value of Y2 corresponding to each of these ]cations.

Within the composite node corresponding to 4, most of the progress is accompli hed
by P2. Thus, transitions M 4 , ms, and m6 are responsible for moving the computation out
of states described by assertions ;6, ý05, and S04, respectively.

Assertion ýP3 is an exception, because here, it is again the responsibility of P, to
guarantee arn exit. We cannot rely on P2 because it is allowed to remain at the non-
critical section mn forever. However, while 4 is the helpful transision for , (enabled
because Y2 = F). it is not necessarily the transition taking the computation out of ;-
states. It is possible that rn2 is taken first. In that case, the computation moves to .
where t4l is no longer enabled, but m 3 is. Finally, if the computation reaches Pi. then

4 is enabled again (since s = 2) and guarantees an eventual exit to the goal assertion
ýPo : at-fs.

6.6 Accessibility for Dekker's Program

Next, we consider program DEKKER. Accessibility for program DEKKER is expressible by
the response formula

atJg2 #- at-18.

That is. any state in which P1 is observed to be at e2, implying that it is interested in
entering its critical section, must eventually be followed by a state in which P1 is observed
to be at the critical section t8. A similar property is claimed for P 2.

We partition the proof of the accessibility property into two lemmas, proving respec-
tively,
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12

7: at_ 3  A !'

atf4 A yg

y2 A s=

,r6: ati-TI 4

in477

• . •3: ~ ~at-to.2A '-i A6 Ym6

e4 3

Figure 9: Proof diagram for accessibility in program PET.
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Lemma A

aLtj =ý-K ((,at.-..-3 7 A t 1V V

Lemma B

at- 3 _7 A t . 1 atHs.

Obviously. the difficult part of the protocol is thet loop at 6'. [Lennia 13 tat h e' at if
P1 is within this loop and has the higher priority, represented by t L . tihe I it w il v-t

to ,g. Lemma A claims that if [1, is just starting its journey towards the critIcaL swcthlol.
then it will eventually gain a higher priority or get to I anywav.

Clearly, by combining these two responsiveness properties. we obtain the acc..'sihilit \v
property.

Proof of lemma A

The proof of the response property

atjf2 =ý-o ((at....( 37 A t = 1) V' atJs)

is presented in the diagram of Fig. 10.
It is easy to follow P1 from f2 to £3. If on entry to (3, t = 1. then we are already at

the goal PO. Otherwise we enter 63 with t = 2. From .3 we can either take fF and reach
f8 (if Y2 = T), which again is part of the goal, or proceed to f4 (if Y2 = F). From i 4 , we
proceed to is since t = 2, and then to G, while resetting y, to F. While being at 3-i ., P2

may still set t to 1 by performing mng, and then again we move to ,0.
However, once we enter 46, P1 stays at f6 waiting for t to change to L. At that point

we have to inspect where P2 may currently be. We consider as possible locations of P2

all of m3r-mg, tracing their possible flow under the relatively stable situation of t = 2.
Y1 = F. We see that all transitions are enabled and lead to m9 which eventually sets t to
I as required.

A tacit assumption made in this diagram is the exclusion of min, m0 , rn1 . and in.2 as
possible locations while P1 is at f6 with yi = F and t = 2. This assumption must hold for
the program if we believe lemma A to be valid. Indeed, consider the situation that P1 is
waiting at f6 with yi = F and t = 2, while P2 is at ml. Since P2 is allowed to stay at the
non-critical section forever, this would lead to a deadlock, denying accessibility for PI.

More Invariants

From the discussion above, it follows that if program DEKKER is correct, and guarantees
accessibility to both processes, then the following assertion must be invariant:

ý02 : aLt-4.6 A t = 2 -+ at..m 3 . 9.

The proof of lemma A only needs (at0- A (t = 2)) --- atim..3 9, but it is easy to
see that if we had at_14,s A t = 2 A -'at-m..3 9, we could immediately proceed to a state
satisfying at-f A t = 2 A -',at_m2 ..9 violating the assumption of the diagram.

By symmetry we should also require the invariance of

02 : atm 4 ..6 A t = 1 ---* at_9..e.
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Let us check the verification conditions for :2.
Clearly, ,;2 is implied by 0.

There are three transitions that may potentially falsify r-

" Transition n-9 ... making at-rn2.,. false.

This transition sets t to 1 which makes t = "2 false and hence Irchtrv, r t 1) r t,
the assertion.

" Transition fq - making t = 2 true.

This transition leads to at-ilo which makes at_(4 ,; false.

.T while t = 2 - making atJ 4 . 63 true.

This is possible only if Y2 = T which, by , v iri. • v at • , il,
at-s 3 ..10 . This almost gives us at-rn3..q. with the exception of rn 10. We th, 11v(-,,1

additional information that excludes the possibility of P2 being at yri ,, whilie t = 2.
This information is provided by the invariants we will develop next.

Clearly, whii, entering inm from ing, P2 sets t to 1. (Can P1 change it back to 2. while P,
is still at mlo? The answer is no. because r110 , as we see in q :-jczt... i0 A t i(a). is
still a part of the critical section and therefore (9, the only statement capable of chariging
t to 2, cannot be enabled.

This leads us to the invariance of

V•3 : at-ml0 •-- t = I
and its symmetric counterpart

;-3 : atflo -- t =2.

To prove V3, we should inspect two transitions:

"• Transition mg - making at-rnio true.

This transition sets t to 1.

" f9 while at-mlo - making t = I false.

Impossible due to the invariance of q : -"(at-s..10 A at-m.. 1 0 ).

This establishes the invariance of 1ha and symmetrically 03. Having 03 we can use it to
show that the last transition considered in the proof of '.2, namely (T while t = 2. implies
at-mI..9 (excluding at-mio), which establishes the invariance of 'P2.

Proof of Lemma B

Lemma B states that if P1 is within the waiting loop f3 with higher priority. i.e.. I = 1. then
eventually it will reach f8. It is stated by (at-...6-7 A t = 1) =t-oatfj. The proof is
presented in the diagram of Fig. 11.

The diagram identifies several major phases in the progress of P, towards its critical
section. First we follow Pi through s,46, 7'7, until it reaches e3,4 Its progress is not
hindered at 46, since t = 1, and no transition of P2 can change this fact. Once P[ gets to
6, 4 with y, = T, the diagram recognizes the following cases:

30



atjn8 A1y

10 : t-ni 9 at 10

r(at-yno.2  V at-rn-, A -ýi2

jý,:at- 4  4(1tj6 3

Figure M7 ro darmfr em 3
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p is at m8.-L) with y2 T.

Eventually P2 departs through ru ( to mu, while settilz !i, I(2 , F.

P2 is at 7 0 2 7 with y2 - F.

There are two ways to exit out of this situtation. Fither P, will reach a;l pt-i'rfr'mni
first, exiting from the while loop to the critical sct ion. A.hIernatIy. P, niay ,,rfrrmn

first one of rn 2 or 7rn and move to mF . while set tinR !y to T.

"* P2 is at M:ni3 , with y92 = T.

Eventually. P2 performs m 5 and moves to ,l; whilic WttiIVg !12 to F.

" P2 is at M6 with y2 F= F.

Clearly. P2 is now blocked at m,6 since t = 1. This allows PI to advance at il, ,,w n
pace to 6. find y2 = F. and move to the critical section at ,.

Note our efforts to minimize the number of assertions by grouping together sit ljat iuu.

with different control configurations wherever possible. Thus. for all the states where y.

T and PI is either at 6e or at f4, we do not distinguish between these two possibilities, hut
partition the diagram according to the location of P2. This is because. in this particular
situation, it is P2 which is the helpful process and we have to trace its progress.

On the other hand, when y2 = F, P1 becomes the helpful process and we start dis-
tinguishing between the cases of atJ 3 and at_ 4 ,, while lumping together the locations of
P2 into two groups: m0o..., 7 and mn6 . These two groups must be distinguished because it is
possible (though not guaranteed) to exit the first group into a situation of y2 = T. but it

is impossible to exit m 6 into such a situation.
This concludes the proof of the accessibility property for Dekker's program.

7 Precedence Properties

Next, we consider properties that are expressed by formulas of the form

p ==- q, W ... Wqj Wqo,

for any r > 0. Adepts in temporal logic will recognize this formula as a nested walting-for
formula. For our purposes here it suffices to consider it as a temporal operator of r + 2
arguments.

To define the semantics of this operator, we deal with half-open intervals of the form
[i..j), for i < j. Such an interval consists of all the positions k, such that i < k < j. Note
that if i = j the interval is empty. For the two intervals [i. .. ) and [j..k). we say that the
second interval is adjacent to (or follows) the first, and observe that their union is the
half open interval [i..k). We also allow intervals of the form [i..w) for an integer i > 0.
and the interval [W,w) which, by definition, is empty.

Given a computation or : so,,... we say that the inteival [z..j) is a p-interval if for
every k E [i..), S•k satisfies p. By definition, an empty interval is a p-interval for every
assertion p.

A computation o, is said to satisfy the precedence formula p#-qq,,... W Wq Wqo if
for every p-position i there exists a sequence of positions i = 1, < i,_• < ... < i0 < '.
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such that [4 _..i__1) is a q,-interval .. - . is a qI-interval, and tinallv if ,) n _.
zo is a qo-position. That is, it requires that anly p-position Initiates a -i erval, which

is foilowed by a q,_I-interval .. , which is followed by a q -interval, which either etcnendis
to infinity or is terminated by a qo-position. Note that this definition allows soim-e of The
intermediate intervals to be empty, and any of them to extend to infinity, In which c&.e.
all succeeding intervals are empty and there is no terminating qw-positioim.

The precedence formula p=z,.-q. W . IVqI VV'qo is said to he P-,ald if it sati>ticd ,v
all computations of program P.

7.1 Bounded Overtaking

Consider program PET of Fig. 1. In the previous section we proved that whenever process
PI exits its non-critical section it eventually reaches its critical section. However. I ,is
guarantee puts no measure on how long it takes for PI to reach the critical section. In
particular, it allows the algorithm to be grossly unfair to one of the processes. allowing P,
one critical entry for each 10 critical entries of P2 . To specify that this does not happen
and that the algorithm is reasonably fair to each of the processes, we may impose the
following requirement:

From the time P, is at f4, P2 may enter its critical section ahead of P1 (overtake
P1 ) at most once.

We refer to this property as 1-bounded overtaking.
For program PET, [-bounded overtaking from location f4 can be specified by the

precedence formula

at-t4 =#ý- (--atrMs,6) W(at-rns.6) D(-•at-mras,6) Dat-fs,6

The formula states that, if P1 is currently at £4, then there may be an interval in which
P2 is not in M5. 6, followed by an interval in which P2 is in M5,6 , followed by an interval in
which P2 is not in mi, 6 , followed by an entry of P1 to f5,6. Any of the intervals may be
empty, in particular the interval of P2 being in m 5,6, which also allows the entry of P, to
f5.6 without P2 getting to M5,6 first. Also, any of the intervals may be infinite, in which
case all the following intervals, as well as the entry of P1 to f5,6, are not guaranteed. This,
however, is not possible because of the previously proven acces;ibility property for P,.

7.2 A Rule for Precedence

We present a single rule PREC for proving precedence formulas. Similar to rule CHAIN.

rule PREC uses auxiliary assertions .o,. , P, that strengthen assertions qo .... q,.

PREC (Precedence Rule)

P1. p - V o,
i=0

P2. VP, -- q1  for i =

P3. {p,}T{VoI} for i = 1. r

p =- q, W q,_. q, Wqo
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To justify this rule consider a state ,; satisfying p. f3v prermise P. it also Žai ,i,'<

V,'J. It follows that there exists some index Jk, 0 < JA. I %. such that ',% sattistie'.I0

If Jk = 0 we are done, since ,:0 terminates the required sequence of intervals. O) hrwis,-.
jI > 0 and we consider gk+l the successor of sk. Premise 1'3 implie> that ,k• sat ilies
"-F:,+ for some )k+l S jk-. We now repeat the argument for ;k+l. anld so on. I)enOtinI III`
indices of the assertions established for ;k and its successors ly j•. . preninw' P3
guarantees that the sequence of indices

JS. k . +i > ...

is nonincreasing, and that it can either terminate at some j,, 0 or extend to intinitv. I,
is not difficult to see that this guarantees a sequence of intervals. I,. I, .... >atisfyiua
respectively

which may either terminate at a state satisfying ;0 or extend to infinity. Clearlv.. ome
of these intervals may be empty. By premise P2. anv interval or state satisfying ,, also
satisfies qi. It follows that q, W q,-, ... q, W q0 holds at position k in the computation.

7.3 1-Bounded Overtaking for Peterson's Program
As explained above, 1-bounded overtaking for Peterson's program is specified by the
formula

at-e4 =4-- (--at-rns,6) B(at-rns,6)W4(--.at-rns,5,)W4(at-t's,6)

We use rule PREC to prove this property for program PET.
To use rule PREC, we have to find four assertions ";, Yl, •2, 'P3. whose disjunction

is implied by at-' 4 (satisfying P1), which strengthen the assertions atJs.f, -at-M.5j.
at.m.5 6, -atrnm5 ,6, respectively (satisfying P2), and which satisfy the verification condi-
tions of premise P3 of the rule.

A natural candidate for ý00 is at-..6 itself,

Po : at-f 5 ,6 ,

because, obviously, it terminates the waiting period. Proceeding to •%. the assertion YPI
should strengthen -at-ms, 6 , and we can safely add to it the conjunct at, 4 . since the
whole period starts with P1 at t4 and terminates by P1 moving to is.

What additional information should we include in ýCl? Considering the role of ,; in
the precedence formula and premise P3, I% should be such that the only exit to a (-,, })-

state would be to an (at-4S,6 )-state. It follows that ý01 should characterize all the states
in which the next entry to a critical section will be by PI, i.e., all the states in which P1
has a definite priority over P2 .

Observing that att 4 A at-m 4 A s = 2 is one such a state, we can add to the assertion
all other states from which this state is reachable by movements of P2 alone. This leads
to the assertion

Y, " at-e4 A (at-..MOA V (atm-4 A s = 2))
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For the assertion Y2 , it seems sufficient to take

S2 : at_( 4 A at-ms,6 .

For '1ý we have to characterize all the states in which P, has priority o:•ver Pl. 'xhril t,,

at i4. Seeing that ',: and ,:2 cover alnost all the configurations satisfyin' ati. The o•rik

remaining one is given by

'ý3 :at_[ 4 A at..m 4 A s 1.

From the way r;o-r:3 were constructed, it is obvious that at-f 4 implies their disiunctiloP,

(premise P1), that each of them is a strengthening of the corresponding asseriion in, the
precedence formula (premise P2), and that '1-•3 satisfy premise P3 of rule PRE.

7.4 Tables and Diagrams for Prr :edence Proofs

Similar to proofs by rule CHAIN, proofs by rule. ,LEC can be presented by both transit ion
tables and proof diagrams. The main differences are that we no longer identify helpful
transitions and that the existence of a table entry or graph edge leading from :.. to o
only requires that i > j.

For example, the proof of 1-bounded overtaking from '4 can be represented by the
following table:

__3 I2 YIIYo
P3 :at- 4 A at-m 4 A s= M4
V2:atJ 4 A at-m 5 ,6  m 6

e atJ4 A (atmo03 V (at-rm4 A s = 2)) f4
ýOo :at-es,6

It can also be presented in the proof diagram of Fig. 12
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